
AD-A246 906

NAVAL POSTGRADUATE SCHOOL
Monterey, California

~DTIC
*VA 0o 5iA199

THESIS

Data Compression using Artificial
Neural Networks

by
Bruce E. Watkins

September 1991

Thesis Advisor: Murali Tummala
Approved for public release; distribution is unlimited

92-05014
/ IiiIlli/ !11111 ll lll1lii! 1

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE OMBo 070-o018

?a REPORT SECURITY CLASSJFICATION tb RESTRICTIVE MARKINGS
Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION iAVAILABILITY OF REPORTApproved for public release;
2b DECLASSIFICATION, DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate School Code 32 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDING;SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

DATA COMPRESSION USING ARTIFICIAL NEURAL NETWORKS

12 PERSONAL AUTHOR(S) Watkins, Bruce E.

13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Engineer's Thesis FROM TO r 1991 September 93

16 SUPPIWE0hF Yekrea in this thesis are those of the author and do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERIS (COlipue on revjrse if ne essary, ar 4 identify by block number)

FIELD GROUP SUB-GROUP NIeur N-etwork, vector Quantization,
Image Coding

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis investigates the application of artificial neural networks for the compression of image data.
An algorithm is developed using the competitive learning paradigm which takes advantage of the parallel
processing and classification capability of neural networks to produce an efficient implementation of vector
quantization. Multi-Stage, tree searched, and classification vector quantization codebook design are adapted to
the neural network design to reduce the computational cost and hardware requirements. The results show that
the new algorithm provides a substantial reduction in computational costs and an improvement in performance.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

IM UNCLASSIFIEDUNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL Tummala, Murali 22b TLEPHO Q..(ea Code) 22dc FF"jESETOL

DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

S/IN 0102-LF-014-6603 Unclassified

i

Approved for public release; distribution is unlimited

Data Compression Using Artificial Neural Networks

bv

Bruce E. Watkins
Lieutenant, USN

B.S. University of California, Santa Barbara. 1984

Submitted in partial fulfillment of the
requirements for the degree of

ELECTRICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL

September, 1991

Author:

Bruce E. Watkins

Approved bv: , .

Murali Tummala, Thesis Advisor

Charles W. Therrien, Second Reader

Michael A. Morgan,Chimn
Department of Electrical and Computer Engineering

Richard S. Elster, Dean of Instruction

ii

ABSTRACT

This thesis investioates the application of artificial neural networks for the com-

pression of image data. An algorithm is developed using the competitive learning

parapdigifl which takes advantage of the parallel processing and cla-sification capabil-

ity of neural networks to produce an efficient implementation of vector quantization.

Multi-Stage. tree searched, and classification vector quantization codebook design

techniques are adapted to the neural network design to reduce the computational

cost and hardware requirements. The results show that the new algorithm provides

a substantial reduction in computational costs and an improvement in performance.

Aooesston For

NTIS GRA&r
DTIC TAR
Unannounred L
Just 1 r ionl,, u_._,

iii Availabilitt Ciod.

Avonoii t
Diit

TABLE OF CONTENTS

1. INTRO D FCTIO N I

A. THESIS OBJECTIVE 6

B. THESIS OUTLINE

II. VECTOR QUANTIZATION 9

A. INTRODUCTION 9

B. DETAILS OF THE METHOD 9

IIl. NEURAL NETW ORKS 17

A. INTRODUCTION 17

B. NEURAL NETWORK LEARNING IS

1. SUPERVISED LEARNING 19

2. UNSUPERVISED LEARNING 20

C. FREQUENCY SENSITIVE COMPETITIVE LEARNING 2:3

IV. ALGORITHM DEVELOPMENT :31

A. INTRODUCTION :31

B. TREE SEARCHED VECTOR QUANTIZATION33

C. MULTI STAGE VECTOR QUANTIZATION 42

D. CLASSIFICATION VECTOR QUANTIZATION50

V. CONCLUSIONS 61

A. ADDITIONAL WORK 64

APPENDIX A: PROGRAM DETAILS 65

REFER EN CES 82

INITIAL DISTRIBUTION LIST 83

iv

LIST OF TABLES

Li1 Number oF -'ncoding Di-stance Calculations Required.

4.2 Number of Processing Elements Required. :3.5

-1.A Number of Codebooks Required. 7

-.4 Code Vector Storage Requirements..... 5

4.5 Channel Load of Codebook Transmission (bits/pixel) 7

1.6 Examnple Codebook 58

ev

LIST OF FIGURES

1.1 Original Image .: 3

1.2 Scalar Quantization at 4 bits/pixel 3

1.3 Scalar Quantization at 2 bits/pixel. :3

1.4 Scalar Quantization at 1 bit/pixel :3

1.5 Original Image. 4

1.6 Delta Modulation at 4 bits/pixel. 4

1.7T Delta Modulation at 2 bits/pixel. 4

L.S Delta Modulation at 1 bit/pixel 4

1.9 Original Image

1.10 2-D FFT at 4 bits/pixel.

1.11 2-D FFT at 2 bits/pixel 5

1.12 2-D FFT at 1 bit/pixel.....

1.13 Scalar Quantization at 1 bit/pixel.

1.14 Delta Modulation at 1 bit/pixel.

1.1.5 2-1) FFT at 1 bit/pixel.

1.16 Vector Quantization at I bit/pixel.

2. 1 Vector Quantization 10

2.2 Original Data Set 14

2.3 Step 1, Centroid of Data Set. 14

2.A Step 2, First Point Splitting 14

2.5 Step 3, New Subspaces 14

21.6 Step 4. New Centroids. 1

2.7 Step 5. Second Point Splitting 15

vi

2.8S Step 6. New Subspaces 15

2.Step 7. New Centroids 15

-2.10 Step S. New Subspaces. Algorithm Complete. 16

3. 1 Neural Network Processing Element 21

3. 2 Backpr-opagat ion Network. 21

:33Competitive Learning Network. 21

: 3.4 Competitive Learning 2-D Example. 24

:3.5 FSCL 2-D Example 27

:3.6 Training Required For LBG and FSCL Algorithms 28

:3.7 Original Image 29

:3.S8 FSCL Using a Size 16 Code Book and a 2 X 2 Block 29

:3.9 FSCL Using a Size 64 Code Book and a 3 X 2 Block 29

3.10 FSCL Using a Size 512 Code Book and a 3 X 3 Block. 29

4.1 Tree Searched Vector Quantization. 36

41.2 Linear Hardware Implementation of TSVQ....................:36

413 Original Image :38

4.4 TSVQ Using a Size 16 Codebook and a 2 x 2 Block 38

4.5 TSVQ Using a Size 64 Codebook and a 3 x 2 Block. 38

4.6 TSVQ Using a Size 512 Codebook and a 3 x 3 Block :38

4.7 Performance vs. Block Size. 39

4.S TSVQ Using a 3 x 3 Block, First Stage. 40

.4.9 TSVQ Using a 3 x 3 Block, Second Stage. 40

4.10 TSVQ Using a 3 x 3 Block, Third Stage 40

4.11I Computational Cost 41

4.12 Multi Stage Vector Quantization. 43

4.1:3 Classification Vector Quantization. 43

vii

1.14 \IS%'Q Using a Size 16 Codebook and a 2 x 2 Block. 17

4.1.5 %[S\'Q Using a Size 641 Codebook and a ~3 x 2 Block. 47

1. 16 \['-\%Q Using a Size .512 Codebook and a 3 x :3 Block.. 47T

1. 17T \ISXQ Using a Size 4096 Codebook and a 4 x 3 Block. 17

4. 1> NIS\"Q U-sing a :3 x :3 Block. First Stage. 4S

4.19) \ISVQ Using a :3 x ;3 Block. Second Stage 4S

4.20 \ ISVQ U'sing a :3 x :3 Block. Third Stage 4S

4.21 Performance vs. Block Size 49

4.22 Computational Cost 51

4.23 Histogram of Edge Detector Ratio Values. 53

4.24 CVQ Using a Size 16 Codebook and a 2 x 2 Block... 5

4.25 CVQ Using a Size 64 Codebook and a 3 x 2 Block.

4.26 CVQ Using a Size 512 Codebook and a 3 x 3 Block. 5

4.27 Performance vs. Block Size. 59

4.2S Computational Cost 60

.5.1 FSVQ. 62

.5.2 TSVQ. 62

5.3 \lSVQ. 62

.5.4 CVQ 62

.5.5 Computational Cost vs. Performance 63

A.1I Basic FSCL Algorithm 66

A. 2 Tree Search Algorithm 67

AA3 Multi Stage Algorithm 68

A. 4 Classification Algorithm. 69

viii

I. INTRODUCTION

Despite all the recent advances in the areas of communications and data coding.

there are still a large number of applications where the achievable data rate is not

sufficient to the task. There also exists an even larger number of tasks for which an

improvement in data compression would enable us to do the job better or more effi-

ciently. Two prime examples of the types of data for which better coding is desirable

are digital speech and image data. Both of these data types require an extremely high

data rate for real time transmission. Both also display a wealth of internal structure

that can be utilized for compression by a coding system. Finally both of these types

of signals can be transmitted with a certain amount of distortion and still provide

the required information. For example, it may be sufficient to maintain intelligibility

for speech data, and it may be sufficient for an image to display enough detail for an

analyst to recognize certain key features rather than a faithful bit by bit reproduc-

tion. This is in contrast to many other types of digital data for which our principle

interest is to add error correcting capability until the probability of a single bit error

is vanishingly small. All these factors combine to make improved compression tech-

niques for speech and image data a worthy goal and thus an active area of research

in digital signal processing.

In signals for which we can tolerate some distortion, there must be some method

for measuring the distortion relative to the original signal. These fall into the two basic

categories of subjective distortion measures and objective distortion measures. The

subjective measures are a result of human impressions of the comparison between

original and distorted versions; while the objective measure has some closed form

mathematical expression by which we can compare competing systems. For our study

I

we desire a data type that has a simple objective measure that corresponds well to the

results of subjective measures. Fortunately, for image data there exists a distortion

measure, mean scIuare error, which is both easy to calculate and corresponds fairly well

to ibjective distortion results. Thus in this thesis. we concentrate on the compression

of image data.

There are many schemes for compressing image data, but few have been suc-

cessful in producing good images quality at low data rates. Generally, images are

coded with each pixel assigned a grey level from 0 to 255. This corresponds to a data

rate of 8 bits/pixel. Several examples showing how three common coding tec'niques

perform at low data rates are shown in the following figures. First, we examine the

technique of scalar quantization. in which we map the 256 grey levels into a smaller

number, which can then be transmitted using a smaller number of bits. Figure 1.1

shows the original at 8 bits/pixel, Figure 1.2 shows scalar quantization at a data rate

of 4 bits/pixel, Figure 1.3 shows a data rate of 2 bits /pixel, and figure 1.4 shows a

data rate of 1 bit/pixel. Clearly this technique produces poor results below about

4 bits/pixel. Second, we examine the technique of delta modulation, in which we

encode the difference between the current and previous pixels using a ras', - scan.

Figure 1.5 shows the original image, Figure 1.6 shows delta modulation at a data rate

of 4 bits/pixel. Figure 1.7 shows a data rate of 2 bits/pixel, and Figure 1.8 shows

a data rate of 1 bit/pixel. While delta modulation is an improvement over scalar

quantization, it tends to perform poorly below about 2 bits/pixel. Next, we examine

a transform technique, the two dimensional fast fourier transform (2-D FFT). Fig-

,ire 1.9 shows the original image, Figure 1.10 shows the 2-D FFT at a data rate of

4 bits/pixel, Figure 1.11 shows a data rate of 2 bits/pixel, and Figure 1.12 shows a

data rate of 1 bit/pixel. This technique offers fairly good reproduction down to 2

bits/pixel.

2

FIg[.1 rgna m Figure 1.2 Scalar Quantization
at 4 bits/pixel

~IF

K i a

Figure 1.3 Scalar Quantizat'On Figure 1.4 Scalar Quantization
at 2 bits/pixel at I bit/pixel

3

Figure 1.5 Original Image Figure 1.6 Delta Modulation
at 4 bits/pixel

Figure 1.7 Delta Modulation Figure 1.8 Delta Modulation
at 2 bits/pixel at 1 bit/pixel

4

Figure 1.9 Original Image Figure 1. 10 2-D FFT at 4 bits/pixel

Figure 1. 11 2-D FFT at 2 bits/pixel Figure 1. 12 2-D FFT at I bi/pixel

Now we compare the previous techniques to a more powerful method. vector

(jitantizati o. In vector quantization. we encode an entire block of data using a single

C ,,,lw,,rtl. lhi, codeword is produced by comparing the block to be encoded with a

cd , ok of example blocks and choosing the example which is closest in some sense.

.\ comparison of vector quantization and the previous three techniques is made in the

folluwing figures at a data rate of I bit/pixel. Figure 1.13 shows scalar quantization

at I bit/pixel, Figure 1.14 shows delta modulation at 1 bit/pixel, Figure 1.15 shows

the 2-1) FFT at 1 bit/pixel. and Figure 1.16 shows vector quantization at 1 bit/pixel.

(learlv the technique of vector quantization is superior at low data rates. There

exist other coding techiques [Ref. 1] such as linear predictive coding and the discrete

cosine transform which have been successful in image coding, but were not considered

in these examples for the sake of brevity.

A. THESIS OBJECTIVE

Vector quantization has not been commonly used because of the large compu-

tational cost involved in generating the codebook and finding the closest codeword

for each block to be transmitted. Recently, a revived interest in research in neural

networks has shown some promise for an efficient implementation of vector quanti-

zation. In this task we benefit from the neural network's ability to quickly perform

categorizations (which accelerates the codebook generation), and also from the par-

allel processing capability (which speeds the process of comparing an input block

to the codebook). This thesis concentrates on addressing the difficulties in imple-

menting vector quantization using neural networks. Full Search, tree search, and

multistage VQ schemes are studied for this purpose. Results of the application of

these techniques to image data are presented.

6

Figure 1. 13 Scalar Quantization Figure 1. 14 Delta Modulation
at 1 bit/pixel at I bit/pixel

Figure 1. 15 2-D FFT at 1 bit/pixel Figure 1. 16 Vector Quantization
at I bit/pixel

7

B. THESIS OUTLINE

In the second chapter we describe the basic theory of vector quantization. in-

t,,,)(Iii'e the existing VQ algorithms, and present some simple examples of how a

Code)ook is generated. In the third chapter we introduce the basic concepts of neural

networks. discuss the types of neural network learning, and present the algorithms

which can be applied to the problem of vector quantization. In the fourth chapter we

ilentifv the shortcomings of existing neural network vector quantizers, and apply the

tree search, multi stage and classification vector quantization schemes in an effort to

improve performance.

8

II. VECTOR QUANTIZATION

A. INTRODUCTION

One of the results of Shannon's rate-distortion theory [Ref. :31 is that better

results can always be obtained if vectors are used in coding rather than scalars.

Trhis result applies even if some technique has been applied to the input data to

remove all correlation. Although delta modulation and transform methods provide

substantial improvement over scalar quantization. they all use scalar coding and are

thus suboptimal. As we saw in the examples presented previously, vector quantization

provides a dramatic improvement in reproduction quality for low data rates. In this

chapter we examine the technique of vector quantization as it applies to images and

review existing methods of implementation.

B. DETAILS OF THE METHOD

Vector Quantization (VQ) [Ref. 2] consists of two sets of mappings: an encoder.

(x), which assigns a channel codeword, u = (ul, u2,..., u,), to each input vector.

x = (X0 . Xi . Xk-1), from a set of possible channel symbols called a codebook. and

a decoder. 3(u). which assigns a code vector, y, to each channel codeword. Note that

each input vector is just a vector version of a block from the subject image with each

pixel value corresponding to an element in the vector. The channel symbols consist

of all possible binary p-tuples, where the size of the input vector and the channel

codeword are in general not the same. The number of possible channel codewords is

2"'. and thus the bit rate of the vector quantizer is p bits/block or r = plk bits/pixel.

It is interesting to note that by properly selecting p and k. we can generate any

fractional bit rate that we desire. This is in contrast to scalar quantization where

9

%e are limited to integer bit rates. Figure 2.1 shows the basic structure of a vector

4'la,,tizer system .

source Encoder Ideal Canne Decoder PeprodJc*1ior-

x U U Y

Figure 2.1: Vector Quantization

The basic goal of the vector quantizer design is to discover which specific set of

Q11coder and decoder mappings will give the best reproduction of the image in some

,,ense. This depends upon the cost function or distortion which we use to measure

the quality of the output image. We wish to find a distortion or distance measure

between our input image, X, and the output image, XC, that is easy to compute and

provides good correspondence with subjective image quality. The measure chosen for

this work is the mean square error (MSE) which is defined as

1 1 N t
d(X, X) = TIIX - X11= N2 - 2 (2.1)

where N is the number of pixels along one side of the image.

We will now examine the conditions under which the vector quantizer will be

optimal. First we define the set of all possible code vectors, y, as C = [y V y E

J(u)]. This set of code vectors together with the corresponding codewords is called

10

the codebook. For the vector quantizer to be optimal it must display two properties

Ref. 51.

Fist. the encoder must select the code vector which is closest to the input

vector according to the distortion measure. In our case this is the mean square error.

1 his can be stated as

d(x. 3[-I(x)]) = mind[x, 3(u)] = mind(x.y). (2.2)
U yEC

Thus the encoder can be thought of as a device which partitions the input vector

space into sections which surround a code vector. Any input which falls into that

section will be assigned the codeword corresponding the code vector contained in that

section. The encoder can also be viewed as a device which divides the input vector

space into a group of sections for which all input vectors occuring in a section are

grouped together and transmitted as a single representative code vector.

Second. for an encoder y. the decoder must assign as the code vector the gener-

alized centroid of all the vectors which are encoded into that code word. In our case

the centroid can be expressed

1

y= 3 (u) = cent(u) - xi (2.3)i(u) X,:v(X,)=U

where i(u) is the number of input vectors that are mapped to u. This is the selection

of the code vector which will minimize the distortion, E[d(xy) I y(x) = u] for a

particular encoder.

If we carefully examine the previous two properties, we can see that the first

gives us a method to optimize an encoder for a given decoder, and the second gives us a

method to optimize a decoder for a given encoder. This suggests an iterative technique

of applying these two properties successively until convergence is obtained or some

11

desired distortion level is reached. This is in fact the basis for the generalization of

joyds optimal scalar quantizer [Ref. 4]. which was produced by Linde. Buzo and

;rav 'Ref. t(i and is referred to as the LBG algorithm. The algorithm consists of Ihe

following steps:

* Step 1 Choose an initial decoder.

" Step 2 Encode the image using the given decoder (optimize the encoder as in

the first property). If the distortion is small enough, terminate the algorithm.

" Step 3 For each codeword u replace the corresponding code vector with the

ceritroid of all input vectors that mapped to u in the encoder produced by step

I (optimize the decoder as in the second property). Then repeat step 2.

The last detail to be addressed is the selection of the initial decoder. Clearly in

an iterative technique such as this, a good initial selection can make a large difference

in the number of iterations required for convergence to the final result. Several tech-

niques have been employed (See for example [Ref. 7]). First, we can just select the

appropriate number of input vectors from the image and use them as the code vec-

tors in the initial codebook. Second, we can apply a scalar quantizer to each element

of the vector and generate the number of values needed to form the code vectors.

Lastly. we can use a technique known as splitting. In this technique we start with a

codebook of size 1, which is just the centroid of the entire data set. Then we split the

code vector by adding and subtracting a small vector from the original code vector

and optimize this new codebook of size two. Then we split the two resulting code

vectors into a codebook of size 4 and optimize this code book as well. We continue

this pattern of splitting and optimization until the desired codebook size is reached.

Of the initialization techniques described above, the splitting technique is most often

12

Uzsed because it initializes each step with a good initial guess which limits the number

f iterations required.

Now we present a two dimensional example to give an intuitive feel for how the

-,!!!ii al orithrn progresses. The data set for the example is presented in Figure 2.2.

11hi, data set has been chosen to have a simple structure in order to eliminate the

need(for many iterations at each splitting. In this example we attempt to generate a

vector quantizer of size four. Step I is to form the codebook of size one by calculating

the centroid of the entire data set (See Figure 2.3). Step 2 is to split the size one

Codehook into a size two codebook bv adding and subtracting a small vector (See

Figure 2.4). Step 3 is finding the vector subspaces which define the decision areas for

the new codebook (See Figure 2.5). Step 4 is to calculate the centroid of each of the

new vector subspaces and make these centroids the new code vectors (See Figure 2.6).

Step 5 is to split the newly generated size two codebook into a size four codebook by

adding and subtracting a small vector from each code vector (See Figure 2.7). Step

6 is to calculate new vectuo subspaces for each of the code vectors (See Figure 2.S).

Step 7 is to calculate the centroid of each new subspace and assign them as code

vectors (See Figure 2.9). Finally, step 8 is to find the vector subspaces corresponding

to the decision regions for our final codebook (See Figure 2.10) and the algorithm is

complete.

For this example it is easy to see where the code vectors for a vector quantizer

of four should be placed; one at the centroid of each of the four clusters. This is the

result produced by the LBG algorithm. However, we must keep in mind that this

example was carefully contrived to eliminate the large number of iterations required

for optimization at each splitting. A problem from a real data set, even if the di-

mension and size are the same as our example. would be much more computationally

expensive.

13

200 - M 200 - 4

100- 11 iL

0 0*
0 100 200 0 100 200

Figure 2.2 Original Data Set Figure 2.3 Step 1, Centroid of Data Set

200- 4 200 -

100- 0 100-

0 01. 0
0 100 200 0 100 200
Figure 2.4 Step 2, First Point Splitting Figure 2.5 Step 3, New Subspaces

14

,, ,m,,lm, m ll,,,mn,,muinnnm ilitli nm ima14~l

200- Y& 200 W

0 0 a

100- ft IooL

0 0
0 100 200 0 100 200

Figure 2.6 Step 4, New Centroids Figure 2.7 Step 5, Second Point Splitting

200- 200 4

[0

100- - oo

0 0
0 100 200 0 100 200

Figure 2.8 Step 6, New Subspaces Figure 2.9 Step 7, New Centroids

15

250-

200'-/

150- V //

100-

50 -

0 50 100 150 200 250

Figure 2.10 New Subspaces, Algorithm Complete

16

III. NEURAL NETWORKS

A. INTRODUCTION

Artificial Neural Networks [Ref. S] have recently been the subject of intense

re-earch because of a desire to develop machides which can achieve human-like per-

flriiance in such areas as speech and inage recognition. After a lengthy period of

inactivity in this area. the recent development of new algorithms, advances in ana-

loa \LSI techniques. and a new emphasis on parallel computing have contributed to

major advances in this field.

Like their biological counterparts, neural networks relv on a large collection of

simple but highly connected processing elements. This enables the neural network to

avoid the sequential instruction processing characteristic of the von Neumann com-

puter. and instead process many possible results in parallel. This property makes

a neural network an attractive option to investigate in many Lecognition problems.

Neiural tietworks are also designed to adaptively update the interconnection weights

between processing elements in an effort to improve their performance. This adaptive

updating is termed "learning." This property allows a neural network to continue to

function well despite changes in the statistics of the input data.

A neural network is a good tool in pattern recognition because of its abilitv to

quickly categorize an input pattern in a previously learned category. However. there

also exist different algorithms which are equally proficient at taking a data set and

forming the occurring patterns into categories without supervision. That is. without

(-xternal definition of the categories to be used by the ieural network. Thus with

some modifications, a neural network can be made to do a task which is very similar

17

to vector quantization. If we can find the proper way to update the interconnect ion

weights and the proper function for the processing elements. we should be able to find

kntltiglrat ion that is capable of duplicating the results of the LBG algorithm which

%we saw in the previous chapter. In the following sections we will briefly discuss the

difference between unsupervised and supervised learning, and how neural networks

can be applied to the problem of vector quantization.

B. NEURAL NETWORK LEARNING

Each processing element of the neural network is connected to many inputs

x = (x 0, x x.v-,) (See Figure 3.1). These inputs could originate directly from

the input to the network, or some or all could arrive from the output of another

processing element. Each input to the processing element has an associated weight

w,, which describes the strength of the connection between the associated input node

and this processing element. Each processing element has an activation level which

is a function of the inputs and weights. One of the most common activation formulas

is

N-i

y = f(E Wx - 0) (:3.1)
i=O

where 0 is some threshold. This is just a weighted sum which is thresholded and

subjected to a function f, which is usually nonlinear.

Typical neural networks are made up of many of these processing elements

which are arranged and interconnected in some pattern. This pattern, the activation

formula discussed above, and the scheme for adaptively updating the weights for each

processing element are the items which characterize each type of neural network.

A final property which characterizes a neural network is the manner in which

it is trained. There are two main categories, namely supervised and unsupervised.

18

1. SUPERVISED LEARNING

In supervised learning, the neural net is provided a set of desired output

a1iws tor each set of input values presented to the network. These desired output

values are used in order to update the interconnection weights. A good example

of a neural network which uses supervised learning is the backpropagation network

[Ref. 91. which is arranged as in Figure 3.2. The activation function for a typical

implementation of backpropagation algorithm is

1 1f~)-1 + e-('-° (3.2)

which is known as a sigmoid logistic function. The training of the network proceeds

as follows:

" Step 1 Initialize the interconnection weights to small random values.

" Step 2 Present a set of input values and corresponding desired output values

to the network.

" Step 3 Apply the activation formula for each processing element until the

output values have been calculated.

" Step 4 Update the interconnection weights starting with the output layer and

moving downwards using the formula

w, (t + 1) = w 0j(t) + q,5,br (3.3)

where wi, is the interconnection between node i of the previous layer and node

j of the current layer, xi is the activation level of node i , r is the learning rate.

The backpropagated error is

19

- y(t - yj)(dj - yj) for an output node
x2 (1 - X,) kkt'jk for an intermediate node (:34)

where y., is the activation level of node j on the current laver, and d, is the

lesired output for node j.

Steps 2-4 are repeated until the network weights have converged or the

error between the output and desired signals is sufficiently low. This method works

well for a case such as speech recognition where we can collect a large quantity of

sample data with the correct classification appended to allow training of the network.

However a network of this sort is of little use for a problem like vector quantization

in which the neural network must form the desired categories without any external

gidance.

2. UNSUPERVISED LEARNING

A good example of a neural network algorithm that utilizes unsupervised

learning is the competitive learning network shown in Figure 3.3. This algorithm is

designed to take the set of input vectors and use them to form a set of categories:

one category for each node on the second level of the network. This is accomplished

by measuring the proximity of each input vector to the set of weights for each node

on the second level and adaptively adjusting the weights of the closest node towards

the input vector. After sufficient training, the network should categorize all input

vectors which are similar into the same category based on their distance from the

weight vector of each node.

The training of the competitive learning algorithm proceeds as follows.

" Step 1 Initialize the weights from the N input nodes to the M output nodes

with small random numbers.

" Step 2 Present an input vector from the data set.

20

x 0 W
x.W

0 OUTPUT

Figure 3.1 Neural Network Processing Element

OUTPUT

HIDDEN LAYER

INPUT

X X X.0~~~ '0",I

Figure 3.2 Backpropagation Network

YO Y YM-'

0

Figure 3.3 Competitive Learning Network

21

" Step 3 Compute the distance d,. between the input vector and the weights of

each output node j using the formula

V -1
dJ= [xi(t) - w'(t)]2 (3.5)

i=O

where x,(t) is the input to node i at time t. and wu,(t) is the interconnection

weight from input node i to output node j at time t. Note that this distance

measure is just the unnormalized MSE between the input vector and the weight

vector of output node j.

" Step 4 Select the output node j" which is closest to the input vector.

" Step 5 Update the weights of the closest output node j" using the expression

u,~i(t + 1) = wii(t) + i7(t)(xi(t) - w(t)) (3.6)

where q(t) is the time dependent learning rate.

* Step 6 Get the next input vector and return to step 2.

We continue training the network until convergence is obtained or the average error

for the entire data set is less than some threshold value.

It is not hard to see the resemblance between vector quantization and the

task performed by the competitive learning algorithm. To implement VQ, we just

present each block of the image as an input vector and train the neural network until

it converges. Then the weight vectors produced for each output node are the code

vectors for the VQ codebook, and the indices of the output nodes are the correspond-

ing codewords. After training, the weights are fixed and the codebook is transmitted

to the receiving site. Then each block to be transmitted is submitted to the neural

22

network. The index of the closest output node to the input is transmitted as the VQ

codeword. At the receiving site. the codeword is used as the argument in a looklip

tahle in which the codewords and the corresponding code vectors are stored. ihe

c(ode vector chosen is then converted into an image block which serves as an approxi-

mation to the original block. After the codewords for all the blocks in the image are

trans;mitted and decoded. the final reproduction image is assembled from the code

vector approximations.

The competitive learning algorithm is now applied to the two dimensional

\Q example presented in the previous chapter. The trajectories of the code vectors

are presented in Figure 3.4. Notice that the algorithm attempts to represent the

data with a single code vector. This occurs because the code vector that is closest

for the first input vector continues to be the closest for all subsequent input vectors.

Thus none of the other code vectors are ever utilized and their weights are never

updated. An algorithm sucl, as this clearly does not utilize all its code vectors and

hus cannot produce an optimum vector quantizer. In the next section we examine

modifications to the competitive learning algorithm which improve its performance

as a vector quantizer.

C. FREQUENCY SENSITIVE COMPETITIVE LEARNING

As shown in the previous section, the principal problem with using competitive

learning as a vector quantizer is the under-utilization of the output nodes. This

problem has been addressed in the literature and several possible solutions have been

presented. In [Ref. 10], an algorithm referred to as the Self Organizing Map (SOM)

is introduced. In the SOM, a neighborhood is defined about the closest output node

and this neighborhood is used to update more than one output node at a time. In

this technique the update formula becomes

23

250-

200- *

100-LII

50,~

0
0 50 100 150 200 250

Figure 3.4 Competitive Learning 2-D Example

24

,L;,(t + 1) = .,(t) + q(t)[x,(t) - wj(t)], j e 0.(j.t) (3.7)

\V1Ir,, 1" 1- the index of the closest output node and A' is the neighborhood defined

athut Tlie closest output node. This neighborhood is started with a large size to

enCtrOrl rge the updating of manv output nodes, and then gradually shrunk with time

as the network converges to generate more fine structure. Finally. the neighborhood

hrinks to a single node which allows each node to be updated independently. At this

point the SOM algorithm is identical to the original competitive learning. We can

see that the improvement in output node utilization comes from establishing a good

distribution of weight vectors throughout the input vector space and then allowing

the network to converge. The drawback of this technique is that the resulting network

takes an excessive number of iterations to reach convergence.

Another technique termed adding a conscience to competitive learning is pre-

sented in [Ref. 11]. In this algorithm we generate a new variable. pj. for each output

node which represents the percentage of the time that a particular node is the closest

to the input vector. This variable is initialized to zero and updated by

(1 - B)pj(t) for =

where B is a constant which is chosen small enough to prevent random fluctuation in

the input data from having too large an effect on p,. Then a bias term. b,. is calculated

using b, = C(1/M-p.), where C is termed the bias constant. This bias term is then

applied to the distance measure for each output node. and the closest node is chosen

based on this biased distance, d3 - bj. The result of these modifications is to penalize

the output nodes that have won the competition frequently. This produces a very

uniform output node utilization. This algorithm has the advantage of converging

25

quickly while maintaining good output node utilization, but requires twice as mainy

Itiance calculations as the original competitive learning algorithm.

.\ variation on the conscicncf technique discussed above is Frequency Sensitive

Ciiipet I ive Learning (FSC L) [Ref. 12]. In this algorithm the distance d,. between

the input vector and the output node weight vector is modified by:

d, = d, g(u,) (3.9)

where u, is the number of times the output node i has won the competition and g is

termed the fairness function, with g(u,) = u, in most cases. The effect of this mod-

ification is to increase the modified distance for those nodes which win frequently.

Over many training iterations. the result is a remarkably even node utilization. This

algorithm preserves the fast convergence of the conscience method and also requires

us to update only one set of weights for each input vector. In addition, the algorithm

requires only one set of distance calculations and is thus much faster than the con-

.;ciencec method. The FSCL vector quantizer is the basic building block which will be

used in the algorithms in the next chapter.

We first apply the FSCL vector quantizer to the same 2-D example for which

the competitive learning algorithm failed. The trajectories of the code vectors are

shown in Figure 3.5. The FSCL clearly solves the problem of node utilization and

produces the same result as the LBG algorithm.

The FSCL has been applied to the vector quantization of images [Ref. 1:3]

and some interesting results have emerged. Figure 3.6 shows the number of training

iterations required by the FSCL and LBG algorithms. For a small codebook. the

FS(L has a sizable computational advantage, while for larger codebooks the LBG

algorithm is more efficient. To get an idea of how codebook size affects reproduction

quality, we have applied the FSCL algorithm using various codebook sizes. The

26

250-

200'-- - -- - -

150-

50-

0
0 50 100 150 200 250

Figure 3.5 FSCL 2-D Example

27

50 trainling required for LI3G and FSCL algorithms

45

40-

S 35 FSC

S 30

S 25

0 0 LBG

15-

to-

01
0 10 20 30 40 50 60 70

number of codewords

Figure 3.6 Training Required For LBG and FSCL Algorithms

28

Figure 3.7 Original Image Figure 3.8 FSCL Using a Size t)
Codebook and a 2x2 Block

J-.1

Figure 31.9 FSCL Using a Size 64 Figure 3. 10 FSCL Using a Size 512
Code book and a 3x2 Block Codebook and a -'x3 Block

29

original image is 256 x 256 pixels (See Figure 3.7) and was divided into blocks of

,1rious sizes to produce a data rate of 1 bit/pixel for each example. Figure 3.8 shows

all iua_,e produced with a)lock size of 2 x 2 and a codebook size of 16. Figure 3.!)

,how an image produced using a block size of 3 x 2 and a codebook size of 6-1.

Figure :3.10 shows an image produced using a 3 x 3 block and a codebook size of

512. We can clearly see that the larger codebooks produce a much better quality

of reproduction at the same data rate. This leaves us with the question of how to

get the good reproduction quality of large codebooks while also taking advantage of

the computational efficiency of the FSCL algorithm for generating small codebooks.

File next chapter demonstrates several techniques that can be applied to the FSCL

algorithm which allow us to form large codebooks without the excessive amount of

training required by the orig A algorithm.

30

IV. ALGORITHM DEVELOPMENT

A. INTRODUCTION

The previous two chapters provided an overview of vector quantization. and

how neural networks have been applied to this problem. Here we investigate the im-

itations of existing algorithms, and propose modifications which substantially reduce

the computational requirements without significant loss in performance.

As we saw in Figures 3.8-3.10, the reproduction quality of a vector quantizer

depends strongly on the dimensionality of the vector utilized. We wish to use the

maximum dimensionality possible, but we are limited by the fact that th-e codebook

size grows exponentially with increasing vector dimension, Whether we plan to im-

,lernent the neural network by simulation or in hardware, this limitation introduces

s ignificant difficulties.

In the case of simulation, thc large capacity memory chips available today allow

us to implement very large codebooks. However, we can see from Figure :3.6 tlit

for very large codebooks, the neural network algorithm has a substantially higher

computational cost than the Linde, Buzo, and Gray (LBG) algorithm. So in order to

make the neural network simulation useful, we must limit ourselves to small codebooks

and thus poor performance, or find a way to form a codebook with a large effective

size by combining many smaller codebooks.

In the case of hardware implementation. the computational disadvantage of the

neural network for large codebook size is substantially mitigated by the advantage

gained from parallel processing. However in this case, the codebook size is now limited

ky the number of processing elements which can be implemented in hardware. Even

31

with expected advances in neural network hardware, it is still important to maxiinize

ie effective codebook size for a given number of processing elements.

hi the following sections we investigate algorithms which improve the perfor-

tmince tfor both hardware and simulation implementations. These algorithms allow a

large codebook to be formed from many small codebooks. and allow a large effective

code book to be formed using a substantially smaller number of processing elements.

The vector quantizers we have examined so far are optimal in two senses. First

the codebook formed produces the minimum MSE possible for the training data

utilized, and secondly the encoder always picks the codeword corresponding to the

vector which produces the least distortion for any given input vector. This type of

algorithm is called full search vector quantization (FSVQ), and it must calculate a

nunmber of distortions equal to the size of the codebook for each vector processed. As

noted above, this property makes full search codes impractical except for the case of

small codebooks.

We now consider algorithms that produce codes which are suboptimal in both

senses mentioned above. They may not produce a codebook which produces the

minimum MSE for the training data, and they may not select the codeword cor-

responding to the smallest distortion available. However these algorithms produce

codebooks which have structure that dramatically reduces the computational effort

required for a given codebook size. Although the performance is degraded relative to

a full search algorithm, the suboptimal algorithm can offer such a large reduction in

complexity that a larger codebook may be implemented. This in turn can providte

better performance at a smaller computational cost than the full search algorithm.

These algorithms are described below.

32

B. TREE SEARCHED VECTOR QUANTIZATION

The TSVQ [Ref. 14] design was developed in an attempt to reduce the number

,4(,,iI ainc calculations which must be made to encode a vector. In the neural network

ilnp[lelinit'ation. not only does the software simulation option also benefit from this

reduction in distance calculations, but we also see a reduction in the amount of

training required. This improvement stems from the fact that the structure of the

TSVQ produces data subsets for which the basic FSCL algorithm vector quantizer

converges more quickly.

The TSVQ algorithm is a structure which causes us to search a sequence of

smaller codebooks rather than a single large one. This is accomplisi d 'v arranging

many small vector quantizers in a tree structure as shown in Figure 4.1. The tree

is searched starting with the root, and each search of the smaller vector quantizers

advances one level through the tree. An m level TSVQ is characterized by the m-tuple

R = (R1 . R 2,... R,) , which describes the number of bits encoded at each level of

the tree. So each vector quantizer at level j would have 2R. codewords and 21:_--= ,

vector quantizers are required to complete level j. The codebook size for the entire

structure is 2F-:= R.

The encoding of a vector proceeds by first applying the input vector. x. to

the vector quantizer at the root of the tree structure. This produces the closest

code vector. yi. which is our first estimate of x, and the first R1 bits of the channel

codeword. This RI-tuple, ul, also serves as the index of the vector quantizer to be

searched in the next level. Thus each codeword in level one provides a mapping to

a vector quantizer in level two. We then present x to the 2R2 size vector quantizer

selected at level two which produces a new estimate Y2 and the second portion of the

channel codeword u 2. We use the vector (u1 ,u 2) to choose the vector quantizer to

search at the third level. This process continues until the final level is reached. At this

33

point. we have produced our final estimate y, and the complete channel codeword.

u u.. u2. urn). This structure allows us to encode a vector using only ZI 2'

,hiitanie calculations in contrast with the 2R calculations required for the full search

Ilet l1)l (H = R, + ... Rm) Table 4.1 shows some examples of how large the

(olllputational savings for the encoding step can be for TSVQ. The R vector listed

in the table describes the architecture of the particular TSVQ structure used in the

example. This notation is explained later in this section.

TABLE 4.1: Number of Encoding Distance Calculations Required

Distance Calculations
R Block Size Codebook Size FSVQ TSVQ

(2,2) 2 x 2 16 16 8
(3.2) 3 x 2 64 64 16

(3.3.3) 3 x 3 512 512 24

The training of the TSVQ proceeds one level at a time. We first apply the entire

training set to the FSCL vector quantizer at the root of the tree until convergence

is obtained. We then use the codebook produced to divide up the data set into

R subsets based on their proximity to the newly generated code vectors. The new

subsets are then applied to the R1 vector quantizers on level two. We proceed in this

way until the vector quantizers at the final level, m, have been trained. Each vector

quantizer in the tree is initialized by randomly selecting vectors from the appropriate

training set. This type of initialization speeds convergence of the neural networks.

This structure allows us to greatly reduce the number of distance calculations

necessarv for the software simulation case. This is true because the path through the

tree allows us to ignore the vast majority of code vectors which are far from the input

vector. TSVQ also displays a property which is termed graceful degradation. This

means that if the codeword must be truncated due to channel capacity considerations.

34

it will still be possible send a good estimate of the data for this new lower data rate.

This is in contrast to the full search method, whose codeword conveys no useful

imtf(,,iatIion if it is truncated. An added benefit of this method is that the structure

ii,~il[((,ii each of the data subsets applied to the FSCL vector quantizers causes

them to converge more quickly. This provides a substantial reduction in training

required for both software and hardware implementations.

A final benefit of the method is the large reduction in the number of processing

elements required for hardware implementation. Since the TSVQ algorithm updates

only the weights of the vector quantizers of the path taken for each input vector

applied, these are the only vector quantizers that must be realized in hardware. Thus

we can convert the hardware implementation from a tree structure to a linear structure

(see Figure 4.2) along with memory and a system to load the appropriate weights for

each level. Thus we can reduce the number of processing elements required from

Z-'-,'=1 1 RJ to Y2L R. Table 4.2 shows some examples of the number of processing

elements required if the TSVQ is implemented in hardware using tree structure and

linear structure. For larger block sizes and code book sizes, the savings is substantial.

TABLE 4.2: Number of Processing Elements Required

PE's Required
R Block Size Codebook Size Tree Structure Linear Structure

(2.2) 2 x 2 16 20 8
(3.3) 3 x 2 64 72 16

(3,3.3) 3 x 3 .512 574 24

For the simulations, a single 256 x 256 pixel image was utilized. This image

was divided into blocks of various sizes to achieve a data rate of 1 bit/pixel for each

example. The I bit/pixel provided a standard to allow comparisons between examples

with different codebook sizes, and provided a challenging enough problem to allow

35

x

vo U1

x x

VQ -.- Va U2.- VO

Figure 4.1 Tree Search Vector Quantization

x

Vo U

WEIGHT

STORAGE V3

Figure 4.2 Linear Hardware Implementation Of TSVQ

36

iood comparisons to be made.

The simulation results for TSVQ are shown in Figures 4.3-4.6. The original

image is shown in Figure 4.3. TSVQ with a block size of 2 x 2. and a size 16

codebook constructed from five size 4 codebooks arranged in a two level tree. is shown

in Figure 4.4. TSVQ with a block size of 3 x 2. and a size 64 codebook constructed

from nine size 8 codebooks arranged in a two level tree, is shown in Figure 4.5. TSVQ

with a block size of 3 x 3, and a size 512 codebook constructed from 73 size 8 codebooks

arranged in a three level tree, is shown in Figure 4.6. It is easy to see the strong effect

of codebook size on performance by noting the improvement in subjective quality

as the codebook size is increased from 16 to 64 to 512. In particular, the larger

Codebook sizes display an image that appears sharper because the small code books

does not contain a sufficient number of code vectors to represent edges well. Also, the

small code book does not contain code vectors with enough different grey scales to

reproduce gradually changing intensities, such as those in the top of the hat or near

the beam to the left of the hat. This is confirmed by the MSE performance, which is

displayed in Figure 4.7. Comparing the MSE performance of TSVQ to the full search

algorithm, we can see that the loss of performance is very small. This is reinforced by

comparing Figures 4.4-4.6 for TSVQ and Figures 3.8-3.10 for full search, which show

that the degradation caused by use of the TSVQ method is small in the subjective

sense as well.

To give an idea of the refinement taking place at each level, each stage of the

three stage TSVQ example in Figure 4.6 is shown in Figures 4.8-4.10. The improve-

ment taking place at each level is clear. We can also get a good idea of what would be

reconstructed if the code were truncated. Figure 4.8 corresponds to 0.33 bits/pixel.

Figure 4.9 corresponds to 0.67 bits/pixel, and Figure 4.10 corresponds to 1.0 bit/pixel.

It is apparent that a degraded but nevertheless useful image is still available if the

37

Figure 4.3 Original Figure 4.4 TSVQ Using a Size 16
Codebook and a 2x2 Block

Figure 4.5 TSVQ Using a Size 64 Figure 4.6 TSVQ Using a Size 51
Codebook and a 3x2 Block Codebook and a 3x3 Block

38

Performance vs. Block Size
75

65-

60-

55 FSVQ

c 50-

45-

40-

35

30J

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Block Size in Pixels

Figure 4.7 Performance vs. Block Size

39

Figure 4.8 TSVQ Using 3x3 Block Figure 4.9 TSVQ Using 3x3 Block
First Stage Second Stage

Figure 4.10 TSVQ Using 3x3 Block
Th ,.,, Stage

40

180 Computational Cost

160

140 -/4/

120
I-

80- FSVQ/

S 60-
z

TSVQ

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Block Size in Pixels

Figure 4.11 Computational Cost

41

code is truncated. This is the property termed previously as graceful degradation.

The improvement in computational cost can be seen in Figure 4.11. For the

i~lir, ,xanitmples. the savings varied from 68 to 72 percent. In other words the TSVQ

ilrithin required only about 1/3 to 1/4 the computation. As stated before. this

advantage i- a result of utilizing smaller more efficient codebooks to form a single large

effective codebook. This large computational advantage is gained at an very modest

loss of performance. This makes the TSVQ an extremely attractive alternative to the

FSC'L algorithm.

C. MULTI STAGE VECTOR QUANTIZATION

We saw in the last section that the TSVQ algorithm offers many advantages

for neural network vector quantizers. but that some troublesome limitations remain.

First. for both TSVQ and FSVQ, the load on the channel of transmitting updates for

very large codebooks can be excessive. Second, even though TSVQ can reduce the

training effort. a large number of passes through the image is still required for good

performance. Finally, although TSVQ produces a codebook with structure, it actually

increases the storage required for the code book. We now examine the application

of a technique termed Multiple Stage Vector Quantization (MSVQ) [Ref. 151 to the

basic FS('L vector quantizer. This technique has the advantage of further reducing

the computational cost and allowing a very efficient hardware implementation.

Like TSVQ, MSVQ has two or more levels, but instead of working with the

original input vector at each stage as in TSVQ, MSVQ attempts to encode the error

generated at the previous level. An m level MSVQ (see Figure 4.12) can be described

by the m-tuple R = (RI, R2 ,..., R,), where R, is the number of bits used to encode

the error at level i of the MSVQ. The first level of the MSVQ is just a normal FSCL

vector quantizer. The input vector, x, is applied to the vector quantizer at level one

42

x

vo U1I

+ Y

VQ U2

A

+

e

VQ U3

Figure 4.12 Multi Stage Vector Quantization

x

codebookU

Figure 4.13 Classification Vector Quantization

43

and the first estimate, yi, is produced along with the first R, bits of the channel

cu),eword. ul. Next, the first error vector is formed by taking the vector difference.

x - V1. This error vector. ei is then applied to the size 2 R2 vector quantizer at level

two. which produces an estimate of the error vector. , and the next R 2 bits of the

,haiinnl codeword. So at the second level, our estimate of the input vector is the

vector sum Y2 = Yi + eI. In the following stages, we continue to form an error vector

from the previous stage and use a FSCL vector quantizer to encode this error. Each

stage produces an estimate for the error and a portion of the channel codeword. At

the last stage, the error vector em-i is encoded and the final estimate of the input

vector is available by performing y, = Y1 + e1 + 2 +.•• + e-,. and the full channel

co(leword U = (u. U2 . U).

For encoding, MSVQ requires z_'= 2 R. -'stance calculations which is the same

as TS\'Q and much less than the 2 R required for FSVQ. However, the MSVQ requires

only to vector quantizers and thus m small codebooks to be stored as compared with

Z' =i1 [la~i for TSVQ. Table 4.3 shows the difference in the number of codebooks

required by TSVQ and for some of the examples used in simulations. This reduces

t he total number of code vectors to be stored from E', IH1=1R. for TSVQ and 2R

Cor FSVQ to J, 2 R, for MfSVQ. Table 4.4 shows the total number of code vectors

which must be stored for several examples of FSVQ, TSVQ, and MSVQ. We can see

that there is a storage price to be paid for the computational advantage of TSVQ.

but the MSVQ provides a large reduction in both. This dramatically reduces both

storage requirements and the load on the channel from transmitting codebook up-

dates. Table 4.5 shows the extra load on the ciannel for each of the three algorithms

assuming that the codebook is updated with each frame. The advantage of MSVQ

in ttis regard for large codebooks is apparent.

As with TSVQ, the training of the MSVQ proceeds one level at a time. We apply

44

I he origiial data set to FSCL vector quantizer at the first level until convergence is

,, Ei ied. Ilien we pass the data through the trained vector quantizer and compute

,} r, r ', ,ctot bet, Pen each inpu v.ctor and the ctosest code ve, -or. Fhis fcrms

I I'[W it i (et which is a collection of the first stage errors. This first staEe error

dtaa set i then applied to the vector quantizer on the second level until convergence

is ')btained: then it is applied a final time to compute the second stage error vectors.

this continues until the last stage has been trained. Although the data subsets

produced by MSVQ do not have the same desirable structure as the data subsets

from TSVQ. there are far fewer codebooks for MSVQ to train. Indeed we find that

the smaller number of codebooks outweigh the larger convergence time in all cases

except for very small overall codebooks. Thus the MSVQ requires significantly fewer

training passes than TSVQ to reach convergence.

It is useful at this point to examine the differences between MSVQ and TSVQ.

Both methods produce a multi-level process, but the processing at each level is sig-

nihcantly different. The TSVQ algorithm presents the original data vector aL each

leve[, while the MSVQ presents the residual error at each level. TSVQ has an ever

ncrt asing number of vector quantizers at each level, while MSVQ has a single vector

quantizer at each level. TSVQ provides increasingly accurate estimates of the in-

put at each level by systematically dividing the higher dimensional vector space into

smaller and smaller subspaces into which the input must fall. MSVQ provides an

initial estimate at the first level, and provides a better estimate at each level by con-

tinuing to add smaller and smaller correction terms in a way similar to the method of

,uccessive approximations. Each of these corrections is a result of performing vector

qlantization on the error subspace of the preceding level. In TSVQ, the code vectors

at intermediate levels are not actually utilized for recorstruction; they are onlv used

as pointers to direct the algorithm to 'le appropriate vector quantizer at the final

45

level. Only code vectors of the vector quantizers at the final level are actually used

ill the iinage reconstruction.

I'lie reconstructed images for NISVQ are presented in Figures 4.14-4.17. As in

t ie previous results, the simulations were conducted on a single test image of 2.56 x 256

p1ixels. hlis image was divided into blocks of various sizes chosen to yield a data rate

of I bit/pixel for each reconstruction using a variety of codebook sizes. The original

image is presented in Figure 4.3. MSVQ using a 2 x 2 block and a codebook size

of 16 is presented in Figure 4.14. This codebook was generated using a two level

architecture containing two code books of size 4. MSVQ using a 3 x 2 block and a

codebook of size 64 is presented in Figure 4.15. This codebook was generated using a

two level architecture containing two codebooks of size 8. MSVQ using a 3 x 3 block

and a code size of 512 is presented in Figure 4.16. This codebook was generated using

a three level architecture containing thr,e codebooks of size 8. MSVQ using a 4 x 3

block and a codebook size of 8192 ;s presented in Figure 4.17. This codebook was

generated using a three level archit ecture containing three codebooks of size 16.

We also present one example of how the image develops through each stage of

the MSVQ process. Figures 4.18-4.20 show each stage for the example presented in

Figure 4.16. As we saw with TSVQ, the improvement is each stage is easy to see.

The property of graceful degradation is also manifested by MSVQ, since the figures

shown correspond to the lower bit rate images that would be produced if the channel

codewords were truncated.

As with FSVQ and TSVQ, we can see that the performance of MSVQ depends

strongly on the size of the codebook. The performance of MSVQ falls far sl~ort of the

standard set by FSVQ as can be seen in the MSE comparison shown in Figure 4.21.

The reason for this large degree of suboptimalIty can be seen in the structure of

NISVQ. Consider a TSVQ structure in which we formed the data subsets for the next

46

N 4 I \SQ Usn ie %-. NIS%'() fl
anc~OKJf(a -X2 BlOCK -,)C e0OOK 111, a 3c Kt

igurc 16 %S%'QUsinga Size _ Figure 4. 17 MS%'Q Using a Size -(
Code~ook and a -',x Block Code book and a 43Block

Figure 4.18 MSVQ Using 3x3 Block Figure 4.19 MSVQ Using 3xS Block
First Stage Second Stage

Figure 4.20 MSVQ Using 3x3 Block
Third Stage

48

Performance vs. Block Size
140

120 MSVQ

100

S 80

6 0- ------ ------- --------------
F S V Q.".

40

20.
4 5 6 7 8 9 10 11 12

Block Size in Pixels

Figure 4.21 Performance vs. Block Size

49

level rising the error vector instead of the original input vector. Since the vector

,1 u1ant zat ion process is translation invariant, the performance of this new structure

\v,ulll he iientical to the original TSVQ. We can also see that this structure is the

same as \lSVQ except that a different codebook is used to encode the error vectors

for each branch of the tree. Thus MS\"Q is equivalent to TS\VQ if we assume that the

probability distribution function which describes the distribution of the errors about

each code vector on the same level of the tree is identical. That this assumption is far

from the truth accounts for the relatively poor performance of the MSVQ algorithm.

.\lthough the performance of MSVQ is poor relative to FSVQ and TSVQ for

codebooks of the same size. MSVQ maintains several highly desirable features. We can

see from Figure 4.22 that NISVQ provides a huge computational advantage for large

codebooks. NISVQ also provides an extremely simple structure which would require

only a small number of processing elements and would make hardware implementation

much simpler. Finally, because MSVQ uses only one vector quantizer per level, the

algorithm vastly reduces the amount of storage required for si:ulation and decreases

the load on the transmission channel due to codebook transmission.

D. CLASSIFICATION VECTOR QUANTIZATION

The refinements to the basic FSCL algorithm that we have examined so far con-

centrate on reducing the computational cost of training the vector quantizer system.

Our standard for performance in all cases has been the mean square error. Now we

take a brief look at the subjective quality of the images produced. The most notice-

able problem with each of the methods is the staircase effect . This is where an edge

follows the outline of the blocks rather than the smooth edge of the original image

as can be seen by examining the curve in the shoulder in Figures 4.3 and 4.5. This

staircase effect follows the size of the block used in coding the image, and will thus

50

Computational Cost

IS0

160-

140-

S120

S 100.

~- 80-
0

z

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Block Size in Pixels

Figure 4.22 Computational Cost

become more and more noticeable as the block size is increased. This puts us in the

tinconifortable situation of wanting to increase the block size to improve mean square

orr(,perfturniance and at the same time wanting to reduce the block size to ininiize

Tl1-i .frc'nsf ffTcct. In order to solve this dilemma we need to examine the cause of

thi .- tairca.,f fffcct and look at possible solutions.

One possible cause is that the codebook does not contain a sufficient variety

of code vectors which represent blocks with edges. To examine this possibility, a

Codebook for a FSVQ with a 2 x 2 block size is presented in table 4.6. The four pixel

values in each row constitute a code vector. We would expect a code vector which

represents an edge to contain both high and low values, but upon examining the

co(lehook in table 4.6. we see that the code vectors exhibit almost no structure and

are certainly inadequate to represent all the possible edge configurations. To examine

the reason for this under-representation of edge blocks, we introduce an edge detector

which is used to indicate whether an edge appears somewhere in the block.

For each set of adjacent pixels in the block, we take the pixel values, m1 and

t, and form the ratio !" -mal and apply a threshold to determine if this is an

edge block or a shade block. The results of applying this ratio to our test image is

presented in Figure 4.23 for a block size of 2 x 2. The authors of [Ref. 16] chose

a threshold of 0.4 to define an edge block. Applying this value gives us only 202

edge blocks out of a total of 16384 blocks in the image. Thus it appears that the

problem with edges occurs because there are so few edge blocks in the image. and

the poor representation of these blocks do not contribute significantly to the mean

square error. So the root of the problem seems to be that the distortion measure. i.e..

mean square error, fails to take into account the perceptual importance of the edge

blocks, This leaves two basic solutions: change to a more complicated. perceptua'ly

based distortion measure, or divide the problem by using separate vector quantizers

52

Histogram of Edge Detector Ratio Values
2500

2000

150 0y

500

0

Fiu 4.23 02 0 3 0.4 0.5 0.6 0.7

53

,lt the edge and shade blocks.

The technique of Classification Vector Quantization (CVQ) [Ref. 16] i See

S 1.11 i uses the second method discussed above to improve the subject ive quality

,I T i , iC,,1r,cte,l image. The image is divided into blocks as before. but now we

iti)ply the edge detector and use a threshold to separate the image into two data sets

,,It containing the edge blocks and the other containing the shade blocks. These two

data ,.ets are then applied separately to a FSCL vector quantizer which is trained

tintil convergence. The two resulting codebooks are then concatenated to form an

overall codebook which emphasizes the edge blocks . The amount of emphasis given

to the edge blocks depends on the sizes of the codebooks allocated to the edges and

lades. For example, a codebook size of 64 could be divided into 48 shade code

vectors and 16 edge code vectors. This would give the edges more emphasis than the

original technique. Even further emphasis would be obtained if we used 32 shade and

:12 edge code vectors instead.

The simulation results for CVQ are presented in Figures 4.24-4.26. As before

a single test image of 256 x 256 pixels was used, and all test cases were conducted

at I bit/pixel. Figure 4.24 shows CVQ using a 2 x 2 block and a size 16 codebook

consisting of 8 edge and 8 shade code vectors. Figure 4.25 shows CVQ using a 3 x 2

block and a size 64 codebook consisting of 32 edge and 32 shade pixels. Figure 4.26

show, ('VQ using a 3 x 3 block and a size 512 codebook consisting of 384 edge and 128

.hade code vectors. For the size 16 case (Figure 4.24) we can see that the codebook

is just too small to represent shades and edges well. The lack of enough shade code

vectors to cover the common grey levels is evident, and the few edge code vectors are

not enough to show much improvement over FSVQ. In the size 64 case (Figure 4.25)

we start to see some substantial improvement in the reproduction of the edges wit-

very little degradation in other areas of the image. Finally, for the size 512 case

.= a

Figure 4.24 CVQ Using a Size 16 Figure 4.25 CVQ Using a Size 64
Codebook and a 2x2 Block Codebook and a Sx2 Block

Figure 4.26 CVQ Using a Size 512
Codebook, d a 3x3 Block

55

i E:igure 4.26). CVQ is substantially better in a subjective sense. and for the Iaraer

,ehuk and larger block sizes it is slightly better than FSVQ in the mean square

,!I,, '' I See Figure 4.27). It is surprising that any method could surpass lie

p!' !,,ruiance of FS\Q since we belieived this method to be optimal in a mean square

sense. but this effect probably stems from the fact that FSVQ converges very slowly.

,11l the test cases were not run a sufficient number of training passes to reach the

tinal value.

A secondary benefit of applying the CVQ technique is an enormous computa-

tI inal savings over FSVQ. This occurs because the code vectors for edge and shade

pixels appear to converge at different rates. The shade code vectors have a very simple

structure and therefore converge quickly, while the edge code vectors have a complex

structure and converge slowly. In FSVQ, we use a single codebook and thus all code

vectors are run through the data set the same number of times. So long after the

shade code vectors have converged, we continue to waste computational time updat-

ing them. In CVQ, we avoid this problem, and we are then able to concentrate our

computational efforts on the difficult part of the problem. Also as we have seen with

rS\Q. a data set which has a large amount of structure makes the FSCL algorithm

converge more quickly. The CVQ method accomplishes this by splitting tl,.- original

data set into shade and edge blocks which further improves convergence speed. As

we can see in Figure 4.28, CVQ has a huge computational advantage over FSVQ as

well as better performance for large codebooks.

56

TABLE 4.3: Number of Codebooks Required

Codebooks
R Block Size Codebook Size TSVQ MSVQ

(22) 2 x 2 16 5 2
(3,2) 3 x 2 64 9

(3,3,3) 3 3 512 73 :3

TABLE 4.4: Code Vector Storage Requirements

Code Vectors
R Block Size Codebook Size FSVQ TSVQ MSVQ

(2,2) 2 x 2 16 16 20 S
(:3,3) 3 x 2 64 64 72 16

(:3,:3,3) 3 x 3 512 512 584 24

TABLE 4.5: Channel Load of Codebook Transmission (bits/pixel)

Channel Load (bits/pixel)
R Block Size Codebook Size FSVQ TSVQ MSVQ

(2,2) 2 x 2 16 0.008 0.010 0.004
(3,3) 3 x 2 64 0.047 0.053 0.012

(3,3,3) 3 x 3 512 0.563 0.642 0.026

57

TABLE 4.6: Example Codebook

Codeword Pixel 1 Pixel 2 Pixel 3 Pixel 4
1 159 167 186 193
2 200 200 202 202
:3 104 105 123 127
4 86 86 87 87

5 223 223 224 223
6 133 126 107 104
7 217 217 217 217
8 137 137 141 141
9 208 209 209 209
10 231 231 231 231
11 175 174 175 175
12 160 159 156 156
13 99 99 99 99
14 240 240 240 240
15 189 189 190 190
16 204 199 177 166

58

Performance vs. Block Size
140

120 ,MSVQ

100-

80
CVQ

60 - Fs V4 --- ----

20
4 5 6 7 8 9 10 11 12

Block Size in Pixels

Figure 4.27 Performance vs. Block Size

59

ISO! Computat ional Co Ist

180O

140-

1 120~

zl 4
0 ~

0 FSV9/'

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 -9

Block Size in Pixels

Figure 4.28 Computational Cost

60

V. CONCLUSIONS

I i !i is t hesis we examined some existing algorithms to implement vector quan-

* zation using neural networks. We also applied three techniques to improve perfor-

ianice and reduce computational cost. In the previous chapter we presented each

Technique separately. Here we will compare the relative performance of each of the

* ree algorithms. Since each algorithm has its strengths and weaknesses. we also

make suggestions about the likely situations where each of these techniques may be

,11propriate.

First let us discuss image reproduction quality. It can seen from Figure 4.27

*hat for a given lock size. FSVQ, TSVQ. and CVQ all offer a similar level of perfor-

latice in a mean square sense. while MSVQ performs noticeably worse. To compare

ettormance in a subjective sense. we present the best results obtained for each tech-

!ique in the following figures. Figure .5.1 shows the FSVQ algorithm using a 3 :3

llck. Figure 5.2 shows TSVQ using a 3 x 3 block. Figure 5.3 shows *ISVQ using

a 4 x :3 Block, and Figure 5.4 shows CVQ using a 3 x 3 Block. Here we see that

(VQ has a small advantage over FSVQ and TSVQ in a subjective sense. and .MSVQ

s again noticeably worse.

Now we examine the issue of computational cost. We can see from Figure 4.2S

that for a given block size, FSVQ has the highest computational cost. TSVQ is the

next highest. and CVQ and MSVQ have very similar and much smaller computational

, osts. Perhaps a better way to rate the computational cost is to relate it to perfor-

nance. Figure 5.5 shows the relationship between cost and performance for each test

Case performed. Algorithms that are most desirable are represented by points in the

ower left portion of the graph. We can see that the best combination of reproduction

61

Figure 5.1 FSVQ Figure 5.2 TSVQ

Figure 5.3 MSVQ Figure 5.4 CVQ

62

Computational Cost vs. Perfornance
200

180 +

160- + =FSVQ

x =TSVQ
S140- 0 = MSVQ

d =CVQ

S120.

S100-

800

E
-60--

40- +

20 *

010

20 40 60 80 100 120 140

MSE

Figure 5.5 Computational Cost vs. Performance

63

qualitv and computational cost is given by the CVQ algorithm.

Although CVQ offers the best reproduction quality even when computational

-... 1 , ,Cmonidered. the other two algorithms presented have advantages of their own.

Blr! \I.SQ and TSVQ offer a huge savings in the number of processing elements

t, iiried lbcause of the linear structure each displays. Thus for a hardware imple-

ne eitation these two techniques should be considered. Also we have seen that for

larue code book sizes the load on the channel due to code book transmission becomes

significant. So if our application requires an extremely large code book the \ISVQ

ak1 oritlim must be considered as it is able to form a large code book with very little

load on the channel (See Table 4.5).

This research has shown that neural networks can be very effective in the im-

plementation of vector quantization. With the application of algorithms such as

('VQ, TSVQ. and *ISVQ. we can improve the performance of neural network vector

(luantizers and make application of the vector quantization technique more practical.

A. ADDITIONAL WORK

Research is planned in the area of adaptive filters in an effort to improve the

convergence speed of the FSCL algorithm. In addition, it is planned to investigate

other current vector quantization techniques and determine if neural network vector

quiantizers can be improved by their application. After these steps are completed. an

effort to combine several of the techniques chosen will be conducted in the hope of

further improving overall performance. Finally, we plan to apply the techniques in

ihis thesis to the coding of speech data.

64

APPENDIX A: PROGRAM DETAILS

ll1il, appendix contains the program flowcharts and listings for each of the

,dl)ruri is in the thesis. Figures A.1-A.4 show the flowcharts. and the prograil

!itliigs follow.

65

image in
row format

imngconl IM
image in
vector format

loop untilI

user cbn t2m fscl.m convergence
input

mse . mse.m I
historyI

codebook

mse mecode~m

coded image

in vector format

Iilmgcon3 ml

coded image
in row format

Figure A. I Basic FSCL Algorithm

66

image in row format

user image in vector fcrmat W

fscl M

coded image in row format

Figure A.2 Tree Search Algorithm

67

Isb~ E

image in row format

44

coemage in vector format

coded image2. fs n mo ora
FiuinpuMlittgeAgoih

68e-

image in
row format

class m i mqgcon 1 r-]

edge data
subset shade image I)

data vec-o'

cbinit2.m subset forma*.

coded mag

coded e
in rowto format a

Figure A.4 Classification Algorithm

69

f unct ion x=inicon 1 (y)

1 program to convert an array of imavjf' data into vpctor format using
% blocks Of arbitrary size

% itiput variable y =subject linage in row format

% output variable x subject imaoge in vector format

%I ~-'-cil var jab ls N = vector wh ichi stores the dimensions of y
n2 -hight of desired block input by user
nl - idth of block input by user
nia *number of blocks to process in horizontal 6irection
n2a -number of blocks to process in vertical direction
k -index to track number of blocks processed
il vertical placekeeper in subject image

-i horizontal placekeoper in subject image
z- temporary storage for desired block

N-size(y); % initialize dimensions of input image

n2-input('heiqht of block % get height og block from user
n1-input('widLh of block %) get width of block from user
nla=flooriNMl/nl); % find I of blocks to process horiz.

n2a-floor(N(2)/n2); % find I of blocks to process vertic.

,-zeros(nl~n2,nlaln2a); % initialize output
for i1I:n2a % main loop: move vertically in image

il-(i-lWn2 1 I set vertical placekeeper
for j-l:nla % inner loop: move horizontally in image
k-(i-1)*nlaj; % track number of blocks processed
jl-(j-1),n1 l; I set horizontal placekeeper
z-y(il:il4n2-l,jl:jl+nl-l1; V get desired block from image

x(:,k)z(:); make conversion from block to vector
end

end

70

Sep 20 11:03 1991 cbinit2.m Page I

funct ion [w, uIcbii it2 (x)

% proiram Lo iitLialize the code bock

% input variable x - data set in vecler fotmat

% cipu. variable w initial code book
u =initial ized friqupncy vector

% local variables N desired number of code words
1 Nx number of data vectors

% this program initializes the codebook by randomly selecting data vectors from the
I subject data set. It also sets up hite initial frequency vector for the codebook
% with all values initialized to 1.

N-input('nunmber of code words ');

rand('uniform')
Nx-max (size (x))
for i-l:N

w(:,i)-x(:,ceil(Nx"rand(1))));
end
u-ones (N)

71

function [w, ujfscl(x,w,u)

I program to implement frequency sensitive competitive leaL-iing
I
I input variables x = subject data 5et arrariged into vectors of appropriate size
% w exi:t, InF wplaoht Itv rlx
% II = ex i si q W~ro 'jlcyt vnctor

% -trit vat lai)lo' w - ipdated wniqht 1-I1 1 ix
Su updated wi [l iloellcy vector

I locaL vat iauls nx size)I data vectors
I Nx = number of data vectors Caution: Nx must be > nx
1 N vector contdining the size and number of weight vectors in w
1 y = ones vector used to set up comparison of distances
I d - vector which stotes the distance for each code vector
I md - the minimum distance contained in d

i iw - the index of code vector with minimum distance
I ep = learning rate
I

1 This program conducts a single pass through data set x using the FSCL algorithm. Tihe
I weight matrix, w, and win frequency vector, u, are updated and passed back to the callinq
I routine.

nxuminsize(x)); I initialize size of data vector
Nx-max(size(x)), % initialize number of data vectors
N-sizeiw); I initialize dimensions of weight matrix
y-ones(l,N(2)); % initialize ones vector

for k-l :Nx % main loop: perform cnce for each data vector
d-sum((x(:, k) y-w) .2); % calculate distance for each code vector
d-d. ,u; I apply fairness function to distance
imd, iwl-min(d); % find minimum distance
ep-O.Ol'exp-u(iw)/10000); t determine learning rate for nearesP,

V code vector
w(:,iw) w(:,iw) ep*(x(:,k)-w(:,iw)); % update weight vector for nearest code vector
u(iw)-u(iw)+1; I update number of wins for nearpst rode jector

end

72

Sep 20 11:04 1991 mnse.m Pago

funct ion m-rse (x, w.)

A~ prniram t~o Oasure rean S 1L],3r error cf codebook

It Lnput variaklesx lub)-ct da~a set arraonged into vectors of appropriate size
we ight matrix of rodepbock to r'e measured

M r co rd of nise for previous versions of code book

I, outpu. variable m updated record of moe measurements

W loca! variables fix number of data vec tors Caution: Nx must be > nx
N V ector Ccontaining1 the size and number of weight vectors in w

*y ones vector used to -net up comparison of distances
1 d -vector which stores the distance for each code vector

p 1mscl = accumulator for current mse

Ithi.-5 program makes a single pass through the data set in order to measure the mne.
A the moe is then appended to an existing vector. m, which has the m.%e record for

I each iteration of the codebook

N~sie~o% initalize size of weight matrix
t~xmx~sze~));I initialize number of data vectors

% initialize mse accumulator
v-ones 1,N (2) % initialize ones matrix

for k-:tNx It main loop :execute once for each data vector
d=.sum(xi:,k)*Y-w) .'2); % calculate for each weight vector
melMSel4min(d); % increment mse accumulator

end
msetmsel/(Nx'N(l)); % normalize mase
m-IMmselJ; It append new mse value to previous recoru

73

function [z,mse code(x,w)

S p 20 11:02 1991 cbinlit2m Paqe I

funct ion [w =Cbinit2 I×)

% program to initialize the code book

% input variable x = data set in vector format

% output variable w = initial code book
% u = initialized frrquency vector

% local variables N = desired number of code words
% Nx number of data vectors

% this program initializes the codebook by randomly selecting data vectors from the
% subject data set. It also sets up ite initial frequency vector for the codebook
I with all values initialized to I.

N=input('number of code words ');

rand(' uniform')
Nx-max(size(x));
for i-l:N

w(:,i)-x(:,ceil(Nx× rand(l)));

end
u-ones (1, N);

74

function x=imgcon3(y)

% proaram to convert an image in vector format to an image in row
(orilt with an arbitrary vector size

I i put variable y subjeCL imarO in vecto r format

Sou put variable x sibject image in row format

I lccal varablns N vector which stores the dimensions of y
n2 heiQht of block input by user
il width of block iopuit by user
n3 = size of desired output image
nia = nlumber of blocks to process in horizontal direction
n2a m number of blocks to process in vertical direction
k = index to track number of blocks processed
iA = vertical placekeeper in subject image
jl = horizontal pLacekeeper in subject image
z - temporary storage for desired block

N=size(y); % initialize dimensions of input image
n2=input(height of block % get height of block from user
nl-input('width of block '); % get width of block from user
n3=tnput('size of output image '); % get desired output image size
nla=floor(n3/nl); % find I of blocks in vert. direction
n2a-floor(n3/n2); % find I of blocks in horiz. direction
x-ieros(n3,n3); % initialize output image
for i-l:n2a % main loop : move vertically

il=(i-l)'n2+l % set vertical placekeeper
for j-l:nla 1 inner loop : move horizontally

k=(i-l)}nlafj; % update number of blocks processed
3l=tj-l)*nl~l; % set horizontal placekeeper
z-zeros(n2,nl); % initaiize temporary storage
for ll:nl I loop to convert vector to block

m-(Il-I)'n2+l; % find section of vector to process
zt:,l)-yim:m-n2-l,k); I get segment of vector

end
x{il:il+n2-1,jl:jl+nl-l)-z; W put completed block into image

end
end

75

Sep 20 11:06 1991 tscb2.m Page I

pogram to initialize the codebook for TSVQ

t,aran es x,x2,... = input data sets in vector form

w1, w2 initial code books

u 1,iu2, = initialized frequpency vectors
N - Jdeired number of code words
"Nx = n1;irmmer of data vectors in data set being processed

n=inpnjt('size of input vector % get size of input vector
N-input('number of codewords '); % get desired nuimber of codewords
nb-input('number of branches in tree '); % get number of branches in tree

% this program constructs the code book initialization for TSVQ by randomly
I chosirg input data vectors from each data set

rand('uniform') % set up random number generator

for p=l:nb W main loop execute once for each branch of treeeva [i('Nx-size(x',int2str(p),');']); I get size of current data set
Nx=N jx (2) ;
for q-1:J inner loop : choose ri random vectors from data set

m-ceil(Nx*rand(l, i)); I select random number
eval (j'w' , int2st r(p) ,' (q) -x' ,int2str (p) ,' (:, m);']

% place selected vector in appropriate code book
end
eval(('u',int2str(p),' ones(1,N);'j); % initialize frequency counter
eval(['m', int2str(p),'-j I;' k; I initialize mse history

end

76

Sep 20 11:05 1991 tsort.m Page 1

Sprngram to so rt vector for trvee searched code

'a ':r iiao es N x =number of data voetorr Caution: Nx must be >nx
I ~ N - vector contaiinq the size and niumber of weight. vectors in w

y onies vector used to 5et up comnparison of distances
d vector which stotes the distance for each code vector

I - I minimum distance from data vector to a code word
I iw index of minimum distance in d

Ix subject data set arrangod into vectors of appropriate size
I w weight matrix of codebook to be used for sorting

xl,x2,.. data sets of vectors for use in next stage
Count -vector to track size of output data sets

pthis program performs the sorting of hLte input data set for use by the sceond Ilevel oft

N sLZe(w); % initialize- dimensions of w
Nx~max(sizetx)); % initialize number of input vectors
mse-0; % initialize mse
y-onesWlN(2)); % initialize ones vector

for k-l:N(2) % this loops initializes the output data sets
eva (x', int2str 1k), zeros (N (I),Nx'1);))

count lk)=0; % initialize size of output data sets
end

for k-l:Nx I main loop :execute once for each input vector
d-,um(x(:.k)y-w).^2.; * calculate distances for each code vector
(md,iwl=min(d); I find closest code vector
count (iw)-count(iw)+l; % update sizp of output data set chosen
eval(('x',int2striiw),'(:.count(iw))-=x(:,k);'I); I update output data set
if rem(k,1000)--O, k, end % update progress to screen

end

for k=I:14(2) t this loop truncates the output data sets to eliminate
% the unused portion of the allocated space

evalU['x',int2str(k),'x',int2str(k),' (:,l:count(k));'J1);
end

77

Sep 20 11:05 1991 tscode.m Page I

% program to code an image for tsvl

% variacles x - data set with Image in vector format
I w - weiqht matrix for vector quanitizer at first level

S1,,w2,... - - weight matrices for vector quantizer at second level

A wa - weight matrix chosen for use at second level
% Z = approximate image produced by coding in vector format
% mse mean square error of approximation, z
% N - vector containing size and number of weight vectors in w

Nx - number of data vectors

y - ones vector used to set up comparison of distances
d - vector which stores the distance for each code vector

d2 - vector distances for code book at second level

md - the minimum distance contained in d
md2 = the minimum distance contained in d2

I iw - the index of the code vector with minimum distance

I iw2 = index of closest code vector in level two

% this progrm performs coding for a two level TSVQ. The input and output

% images are both in vector format

N=size(wl); % initialize dimensions of w

Nx-max(size(x)); % initialize number of input data vectors

mse-0; % initialize mse
y~ones(l,N(2)); I initialize ones vector

z=zeros(N(l),Nx); I initialize output image

for k-l:Nx % main loop : execute once for each input vector

d=sum(lx(:,k)*y-w).^2); V find distances for code book at first level

[md, iw)-min(d); % find closest code vector at f-rst level

eval(['wa-w',int2str(iw),';']); % pick weight matrix to be used at level two

d2=sum((x(:,k)*y-wa) .^2); % find distances for code book at level two

(md2,iw2l-min(d2); W find closest code vector at level two

z(:,k)-wa(:,i-2); % place approximation in output image
mse-mse~sum((x(:,k)-z(:,k)).^2); % increment mse

if rem(k,l000)==0, k, end I update progess to screen

end
mse-mse/(Nx*N(l)); I normalize mse

78

Sep 20 11:07 1991 mssort.m Page I

funct Ocn z-mssort (x, w)

I r-ram to snt up muflti stage vq

% inpit variables x = subject data set arranged into vectors of appropriate size

I - weight matrix of codebook to be used for sorting

% output variable z
=

data set of error vectors for use in next stage

% local variables ix - number of data vectors Caution: Nx must be > nx
% N - vector containing the size and number of weight vectors in w
% y = ones vector used to set up comparison of distances

% d - vector which stores the distance for each code vector

% md = minimum distance from data vector to a code word
i w - index of minimum distance in d

1 this program takes a data set and a code book and performs on pass through each

I data vector, finding the closest code vector and calculating and storing the

1 error. This new data set is used for the next stage in Multi Stage Vector

I Quantization.

N=size(w); 1 initalize number and size of weight vectors

Nx=max(size(x)); I initialize number ofdata vectors

y-ones(l,Nf(2)); % initialize ones vector

z-zeros(N(1), Nx) % initialize error data set

for k-1:Nx % main loop : execute once for each data vector
d-sum((x(:,k)*y-w).^2); % calulate distance for each code word
fmd, iwi-min(d; t find the minimum distance

z(:,k)-x(:,k)-w(:,iw); % calculate and store the error vector

if rem(k,1000)--0, k, end % update progress every 1000 data vectors
end

4

79

Sep 20 11:08 1991 mscode.m Paqe I

'j;qctt 1 z, mse] Imscodp (x, w,w)

% *c!;a"Zn. Lo code .In j:ooqe lor m vq

3 ii~put variables x = (iota net with inage iui vector [eiaL

t -a weight matrix for vector Ijuantizer at first level
% 'l weight matrix for vector quantizer at second level

I oit;put variables z = approxlmate image produced by coding in vector format
% mse - mean square error of approximation, z

k local variables N = vector containing size and number of weight vectors in w
Nx - numoer of data vectors
x2 = data set containing first level error

1 y = ones vector used to set up comparison of distances
I d = vector which stores the distance for each code vector
I d2 - vector distances for code book at second level
I md - the minimum distance contained in d

md2 - the minimum distance contained in d2
t iw - the index of the code vector with minimum distance

% iw2 - index of closest code vector in level two

% this program performs coding for the MSVQ algorithm. This version is
* to a two level architecture. The input and output image are both in
% vector format.

N-size(w); % initialize dimensions of w
Nx-max(size(x)}; 1 initialize nurber of data vectors
mse-0; 1 initialize mse
y=oleo(i,N(2)); I initialize ones vector
z-zeros(N(1),Nx); % initialize out.)ut image

for k-l:Nx I main loop : execute once for each data vector
d-sum((x(:,k)*y-w).72); % find distances for first level code book
tmd, iwj-min(d); % find closest code vector on first level
x2-x(:,k)-w{:,iw); % form first level error
d2=sum((x2*y-wl).^2); V find distances for second level code book
(md2, iw2)-min(d2); % find closest code vector on second level
z(:,k)mw(:,iw)+wl(:,iw2); % form second approximation to input vector
mse= mse+sum((x(:,k)-z(:,k)).2); % increment mse
if rem(k,1000)--0, k, end % update progress to screen

end
mse-mse/(Nx'N(l)); % normalize mse

80

Sep 20 11:20 1991 cl,3ss2.rs Fa'ie I

A inrp)u t vari.i LI e i; h .rj ft irnir4e ,ri row forrtt
i ir,, t) 1 x 1 v i. r f n rr''ti or r y o f olue b locks

x. vo-i-or f~rouit array of maeblocks
-j rovt Vii ione N vncr, wiitcli s: jr-, tlt dim7 uinns of y

1 11"- herlht- of d, tenl block inpt- by user
ni width of block ini-it by user
11 na = number o, blocks to process in horizontal dir,?ctin

In2a = number of blocks Lo process in vertical dire~ction
Ik -index to track number of blocks processed

4r 11 vertical placekeeper in subject imaqe
)lj = horizontal placeke-eper in subject image

I z -, array used to evaluate edge detector ratio

I this prograrm takes an image in row format applies an edge detector, and
I outputs two data sets in vector fctt.-, Thre first data set consists of
I t!he edlqe blocks, and tire second co, -sts of the shade pixels.

n2-inputI' hpiohit of block
nI-irrput('width of block '
nla-floor(N(1)/nl);
n.a-floor(N(2(/n2);
xL-zreros(nln2,nlan2a);
x2-xl;
count 1 -0;
cot nt 2-0;
for i- I: n2a

i 1-) n2 .-I
for j -lI nta

j 1= j-1) -nI+ 1;
z-(il: il tn2-1,l jf nl-l);

zl~z I :);
z2 (l)(zI (1)-ti (2)) Imax (zI(1), zi(2)1;
z2 (2) =(zl (1)-zI (3)) Imax(zi (I), zi(3))

z2)3)'=)z1(1) -zI(4))Imax~zl (I), zI(4);
z2 (4)-)zl (2) -zi (3)) !max(zl (2), zi(3))
z2(5)-)rI(2' 21(4)) /max(zI(2), zi(4));
z2(6)-)zl(3 ri(4))/max(zl(3),zl(4) I;
if max~abs(z)) > 0.4

countlicountil ;

xI(:. count1) -zi;
else

count 2-count2+ 1;

nx 2(:,count2)-zl;
end

end

% xl-l (,I~conend

x2-x2): ,I:count 2);

81

REFERENCES
A. I\'. .Jaii. -Irniao Data Compression: A Review.'* Proceedings of thf IEELE.

R.1. M. Gray,-. Vector Quantization," IEEE .4SSP Vlagazine.Vol. 1. 4-251. Jani.

i. C. F7. Shannon. --Coding theorems for a discrete source with a fidelity criterion."
/[?[NVational Conrention Record. Part 4. 142-163. 1959.

V .P. Lloyd. *Least squares quantization in PC.U Bell Laboratories Technical

IL. Abuit (Ed.). _'Vector Quantization". IEEE Press. 72-86. 1990.

Y. Linde. A. Buzo. and R. M. Gray, -An algorithm for vector quantizer design.-
IL'EE Transactions on Communications. COM-28. 84-95. January 1980.

71). O'Shatighnessy, --Speech Communication". Addison- Wesley. ;31:3-:323. 19K7.

R.1. P. Lippman. An Introduction to Computing with Neural Nets," IEEE .4SSP
.laqa ine. 4-22. April 1987.

)1). E. Runmeihart. G. E. Hinton, and R. J. Williams. " Learning Internal Repre-
uet at ions by Error Propagation." Parallel Distributed Proces,i ng: Exrplo ration~s
t)fin Iicrostritcture of Cognition. Vol 1: Foundations. MIT Press, 1986.

I.L. l\-olontn. --Self- Organization and Associative Memory," Spring Verlag. 1984.

D1 L. [)eSieno. "Adding a conscience to competitive learning.- IEEE International
iwoference on Neural Networks, 111.7-1124, 1988.

12. Staiiley C. Ahalt. Ashok K. Krishnamurthv, Prakoon Chen. and Douglas E.
Nleltuj. "C ompetitive Learning Algorithms for Vector Quantization.~ Neural Net-

nOA.Vol. 3. 277-290. 1990.

1. S tanley, C. Ahalt. Ashok K. Krishniamurthy. Prakoon Chen. and Douglas E.
Mielton. --Performance analysis of two image vector quantization techniques."
(FEE INNS International Joint Conference on Neural Networks. Vol 1. 169-175.

1 li. M. Gray. "Full Searched and Tree Searched Vector Quantization." Proceedings
q* ?'N_ [C-i S'5P. .593-596. Paris. Apr. 1982.

15 liin-Hwang Juang, Multiple Stage Vector Quantization for Speech Coding.~
Procodings of 1982 ICASSP. .597-600, Paris, Apr. 1982.

16t. A, Gersho and B. Ramamurthi. -Imnage coding using vector quantization.~ Pro-
Ctudings of 1982 ICASSP. 428-431. Paris. Apr. 1982.

82

INITIAL DISTRIBUTION LIST

No. of (ujpi(e

I)c ei i-e lt-chniiical Information (Center
(';meron Station

A ltoxaidria. Virginia 22:304-61435

z. Library. Code 322
.Naval Postgaraduate School
M ont ereY. California 9:3943-5002

ChIairmian. C ode ECI
Department of Electrical and
('1ir)Luter Engineering

Vai\i Pust gradl ate School
Mlonterey. California 93943-5000

Pr-ofessor Niurali Tumnmala, Code EC/Tu5
Department of Electrical and
Computer Engineering
.Naval Postgraduate School
\lonterev. California 93943-5000

Professor Charles Therrien, Code EC/TiI
D~epartment of Electrical and
Comnputer Engineering
Naval Postgraduate School
Niwitoiev. California 93943-5000

h Dr. R. Madan (Code 11L4SE)I
Office of Naval Research
$00 North Quincy Street
Arlington, Virginia 22217-5000

7. Mr. John Hager (Code 70E1)I
Naval Undersea Warfare Engineering Station
K ev port. Washington 9834.5

83

IT BruLce E. Watkins1
S)Jewell Ave.

Pacijtic Grove. California 939,50

844

